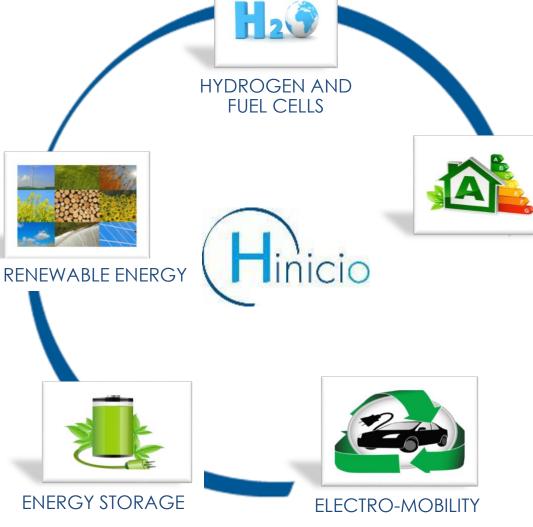


Power-to-gas Short term and long term opportunities to leverage synergies between the electricity and transport sectors through power-tohydrogen



18 December 2015

COPYRIGHT: HINICIO & LBST

Hinicio

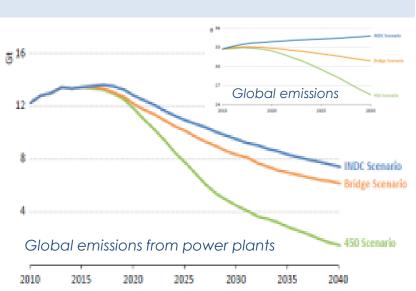
STRATEGY CONSULTANTS IN SUSTAINABLE ENERGY AND TRANSPORT

- Multidisciplinary approach and team:
 - Technology
 - Market/economics
 - Policy and regulation
- □ 3 offices:
 - Brussels (HQ)
 - Paris
 - Bogota
- Clients in more than 15 countries in Europe, Latin America and Asia

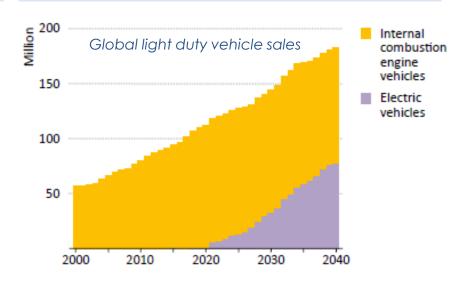
- Independent expert for sustainable energy and mobility for over 30 years
- Bridging technology, markets, and policy
- Renewable energies, fuels, infrastructure
- Technology-based strategy consulting,
 System and technology studies,
 Sustainability assessment
- Global and long term perspective
- Rigorous system approach thinking outside the box
- Serving international clients in industry, finance, politics, and NGOs

- 1. Introduction Setting the scene
- 2. Application A : Hydrogen from power-to-gas for use in refineries
- 3. Application B : Semi-centralised power-to-hydrogen system for coupling the electricity and transport sectors
- 4. Questions

Introduction Setting the scene


Section 1

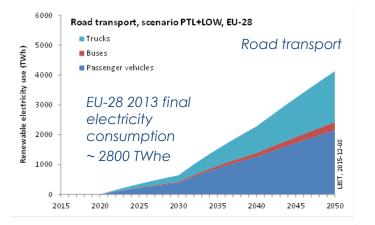
COPYRIGHT: HINICIO & LBST

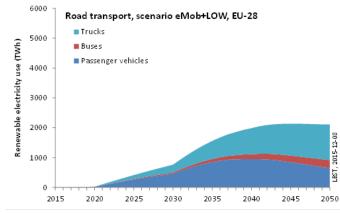


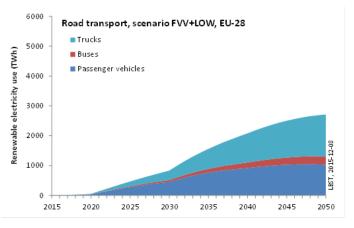
More renewables and electrification of transport are required on the road to 2°C

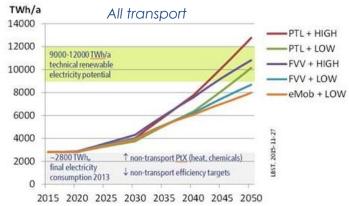
IEA 450 (2°C) scenario

2°C requires more renewables...

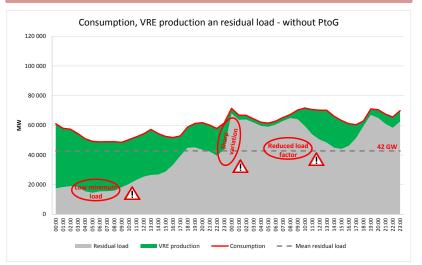

... and electrification of transport


- Investment increase from B\$270/yr in 2014 to B\$400/yr in 2025.
- Installed capacity growing from 450 GW today to 3300 GW in 2040.
- Variable renewables increase from 3% of generation to more than 20% by 2040.


- Sales of EVs exceed **40% of total passenger car sales** worldwide in 2040.
- Sets the scene for providing the needed emissions reductions **after 2040.**

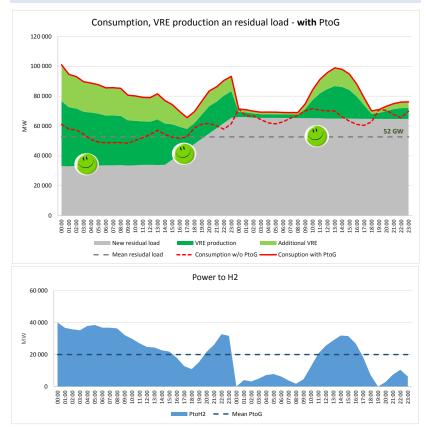


The required additional power generation capacity depends on the adopted powertrain technology, but is in any case substantial.



Power-to-Gas allows to decarbonise transport while improving the power system's operating conditions

More renewable without PtG = <u>More</u> problems



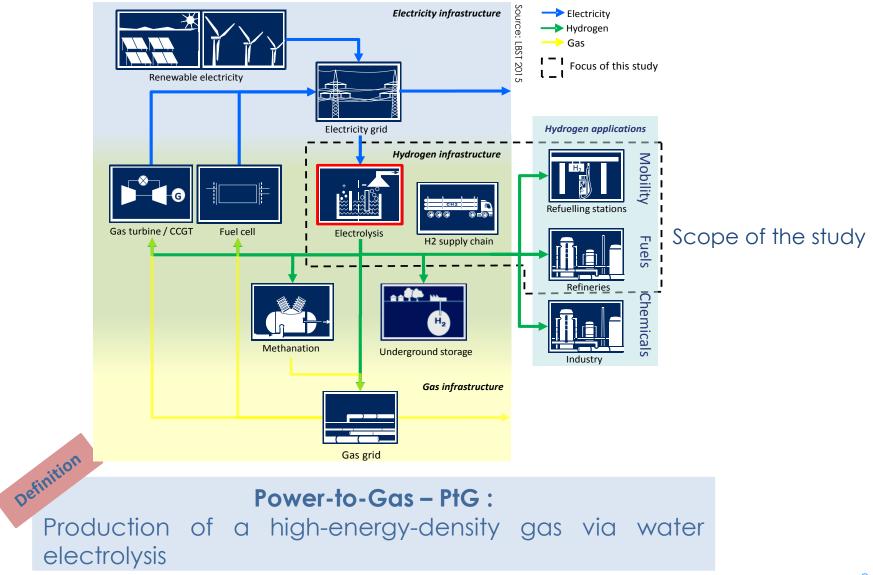
Power consumption during two days in France in Jan and Feb 2013. Actual VRE* production on these days multiplied by 10

Power-to-Gas provides systemic benefits and improved economics for all:

- Improved load factors / less curtailment;
- More predictable operation of dispatchable capacity.

More renewable with PtG = <u>Less</u> problems

Additional consumption of 20 GW on average from H2 mobility


Only half of this is provided by additional VRE The other half is provided by the existing capacity:

*VRE : variable renewable energy

Figures: Hinicio, Compensating VRE intermittency with Power-to-gas 8 with data [RTE,2015]

Power-to-Gas: <u>Linking ren</u>ewable electricity and transport

Hinicio

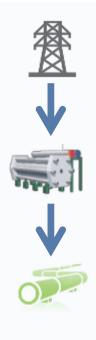
Power-to-Gas can support balancing at any time scale and at any point in the T&D system

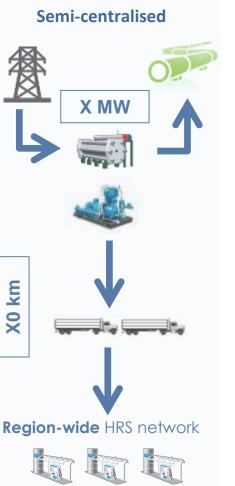
With a high degree of **flexibility** and supported by large amounts of storage, PtG can **support balancing at any time scales**, from supply of **primary reserve** to **seasonal storage** (with underground storage).

PtG can close growing gaps between local production and consumption, reducing the need to expand the distribution grid, which carries most of the burden

3

2


PtG can be used along with other flexibility options such as CHP & heat pumps with heat storage, batteries and demand response.


Power-to-hydrogen can be implemented at different scales, from distributed to centralised

W/o H2 use

With H2 use

On-site

Tree

X0 kW

Comparing electrolyser technologies

	Alkaline	PEM
Development stage	Industrial since 1920s	Early stage commercialization
Maximum capacity	Unit : 3.8 MW/67,7 kg/h Plant : 100 MW/1900 kg/h (Zimbabwe)	6 MW/ 120 kg/h (3 x 2 MW pilot unit)
Current density	Up to 0.4 A/cm ²	Up to 2 A/cm² (R&D: 3.2 A cm ⁻² at 1.8 V at 90°C)
Dynamic response	Less than one minute	Within seconds
Peak load	100%	200% (30 min)
Turn down	20 – 40 %	<10 %
Operating pressure (typical)	A few bars	Tens of bars
Investment costs	1.1 M€/MW*	1.9 M€/MW*
Operating cost	5 - 7 %	4 %

*Includes installation and balance of plant costs

Direct injection is the cheapest way to "dump" hydrogen from excess RE into the gas grid

Advantages

DIRECT INJECTION

- Natural gas specification allows the blending of hydrogen
- Less costly than methanation

Disadvantages

- Maximum injection limit (technical and regulatory).
- There is no business case for direct injection unless regulatory changes are made (FIT...)

Requires a concentrated CO2 source

 More costly than direct injection: no business case without regulatory changes

METHANATION (Sabatier process)

- No maximum injection limit
- Exothermal potential synergies with CO2 generating process

Regulation drives the energy transition in both the power and transport sectors

Торіс	Sector	World	EU	France	Germany
Greenhouse	All sectors	< 2°C (COP21)	2020: -20% 2030: -40% 2040: -60% 2050: -80/-95% vs. 1990	2030: -40% 2050: -75% vs. 1990 (LTE)	2020: -40% 2030: -55% 2040: -70% 2050: -80/-95% vs. 1990
gases	Transport		2020: -6% (FQD) 2050: -60% (COM 2011 144)	2020: -10% ₂₀₁₀ (code de l énergie) 2028:-22% ₂₀₁₃ 2050:-70% ₂₀₁₃ (SNBC proj)	2015: -3.5% ₂₀₁₀ 2017: -4% ₂₀₁₀ 2020: -6% (BlmSchG)
Renewable energy	All sectors		2020: 20% 2030: 27%	2020: 23% (LTE)	2020: 18% 2030: 30% 2040: 45% 2050: 60% (Energiekonzept)
	Transport		2020: 20% (RED)	2020: 10.5%₂₀₁₃ (SNBC proj)	
Energy	All sectors		2020: -20%1990 (COM 2011 112)	2020: -7%₂₀₀₅ (SNBC)	2020: -20% 2030: / 2040: / 2050: -50%
consumption	Transport				2020: -10% 2030: / 2040: / 2050: -40%

Power-to-hydrogen systems can simultaneously address multiple applications

	E	Business mode assessed	el
Applications	Options	BM1	BM2
H2 sales to other markets	 H2 fuelling stations Industry – H2 refineries 		8
H2 injection into gas grid	DirectMethanation	Ø	\bigcirc
Ancillary services to power grid	 Primary and/or secondary reserve 		

BM1: Business model 1

- Electrolyser investment and operation by an independent entity
- Income from hydrogen sales to market and gas grid and from provision of ancillary services to the power grid

BM2: Business model 2

- Electrolyser considered as a part of the T&D infrastructure
- Costs fully covered by costs-based grid charges

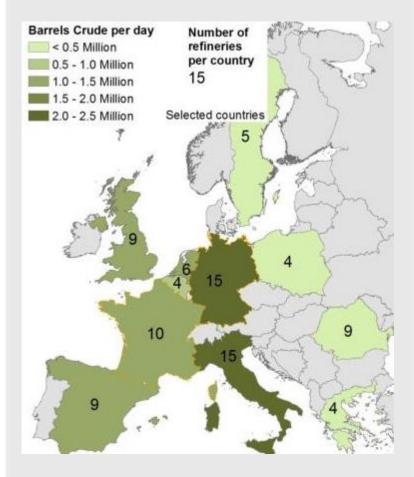
Application A Hydrogen from power-to-gas for use in refineries

Section 2

COPYRIGHT: HINICIO & LBST

Regulatory framework Fuel greenhouse gas emission reduction

Criteria	EU Fuel Quality Directive (FQD)	France Code de l'énergie	Germany BlmSchG/V
Lifetime	2020	2020	2020
GHG targets	-2 % by 2015 -4 % by 2017 -6 % by 2020	-10% by 2020	-3.5 % by 2015 -4 % by 2017 -6 % by 2020
Responsibility	Supplier	Energy tax responsible entity (usually the fuel refinery)	Energy tax responsible entity (usually the refinery)
Options			
upstream:	Flaring/venting	Flaring/venting	-
refinery:	-	Refinery GHG emissions reduction	-
downstream:	Biofuels and alternative fuels from non-biological sources	Biofuels, electricity	Biofuels
Hydrogen	H ₂ eligible as transportation fuel (2015/652/EU, ANNEX I), <u>not</u> for use in refineries yet	H2 <u>not</u> yet eligible as transportation fuel. Reduction of refinery emissions through use of low carbon hydrogen is eligible	H ₂ <u>not</u> yet eligible; 'further renewable fuels' (e.g. PtG) and 'other measures' are subject to enforcement of a legal ordinance (§37d (2), point 13
Infringement penalty	Subject to national implementation, which shall be 'effective, proportionate and dissuasive'	Not yet defined (Application decrees to be published in 2017)	470 €/t CO _{2eq} 17



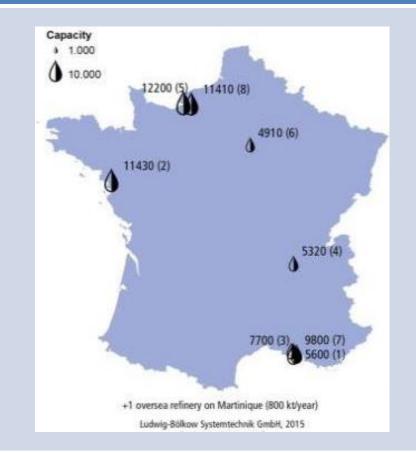
Refinery landscape Europe

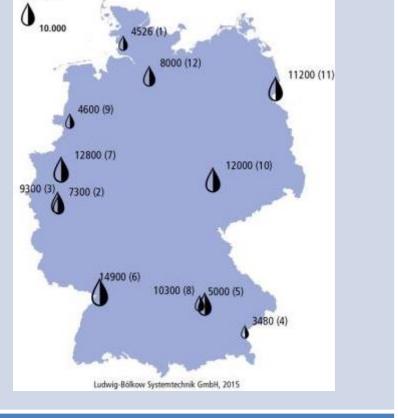
France and Germany are among the 'top 5' countries in Europe with regard to the number of refineries and the total installed refinery

Germany is the leading refinery location in Europe, by installed distillation capacity as well as by the number of refineries installed

France ranks fourth in Europe by number and capacity

Source: LBST with data [E3M et al. 2015]



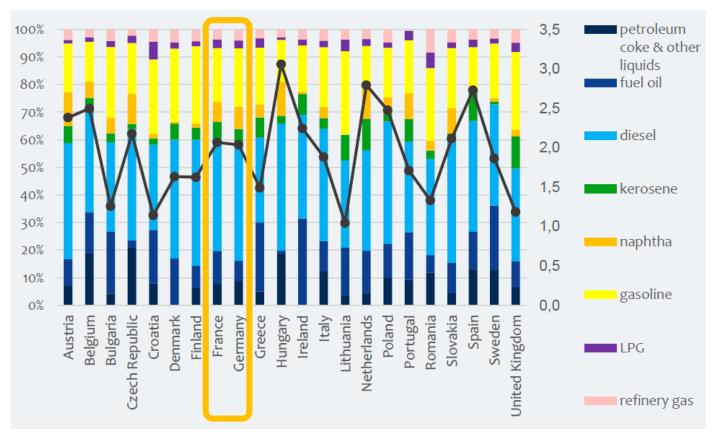

Refineries in France and Germany

1.000

GERMANY

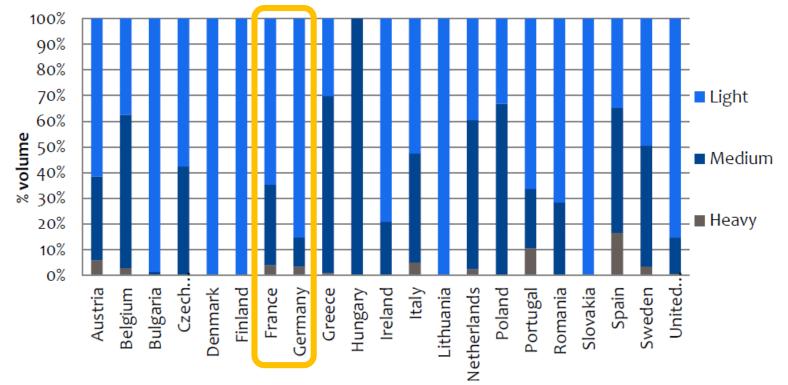
FRANCE

Σ 103.4 million t/yr capacity

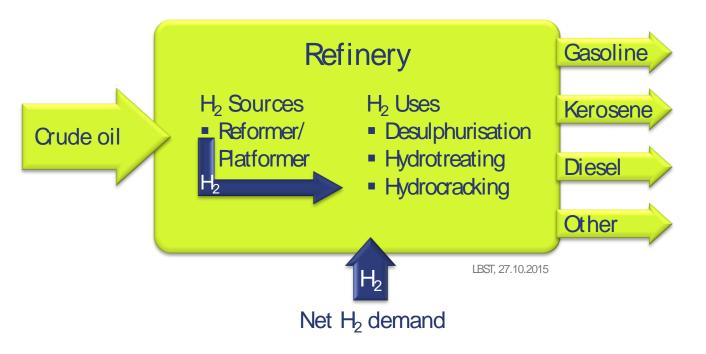

Image: LBST with data [MWV 2015]

 Σ 68.4 million t/yr capacity

Image: LBST with data [MEDDE 2015]

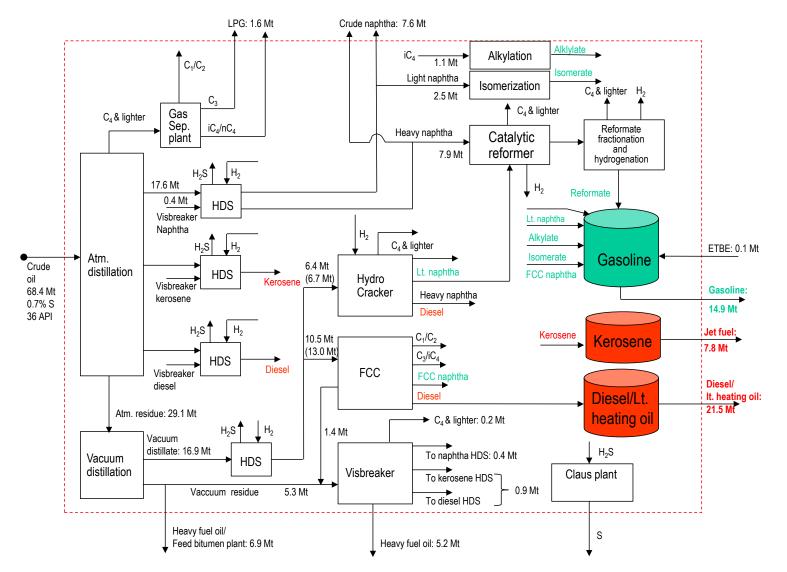

Product portfolio of European refineries

- The product mix from European refineries is diesel oriented (31-49% diesel, 13-30% gasoline, 1-12% kerosene – in % of total refinery output)
- Marginal differences between French & German refineries' product mixes only
- France and Germany are well within the average of European refineries



Crude oil qualities in European refineries

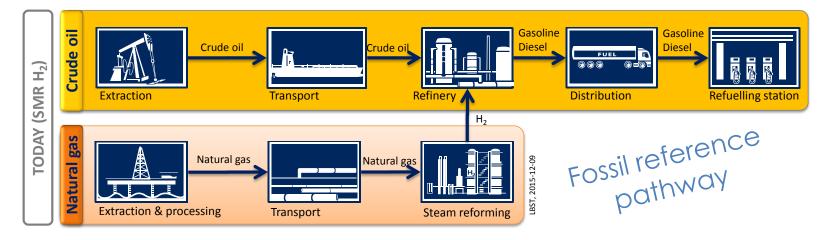
- There is a trade-off between crude oil cost and quality
- In Europe, a wide range of crude oil qualities is processed
- French and German refiners source rather better qualities
- Average crude oil quality [EXERGIA et al. 2015]:
 - France: 36.0 API gravity, 0.7 wt.-% sulphur
 - Germany: 37.3 API gravity, 0.5 wt.-% sulphur

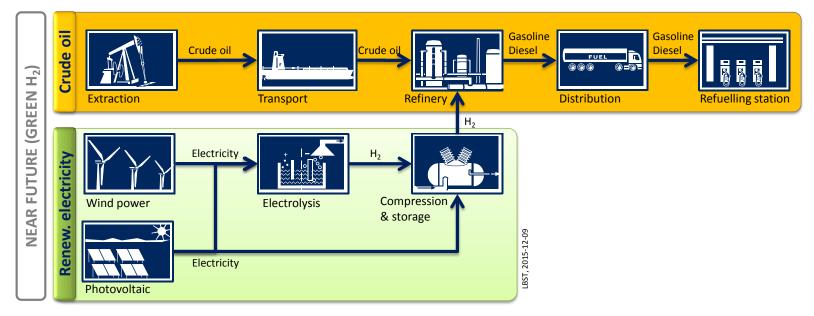


- Calculation: Net hydrogen demand = process sources process uses
- Desulphurisation is a sensitive parameter to net hydrogen demand
- By tendency,
 - crude oil quality is further deteriorating \rightarrow increasing sulphur content
 - demand for heavy fuel fractions is decreasing → maritime emission areas

Synthetic refinery France

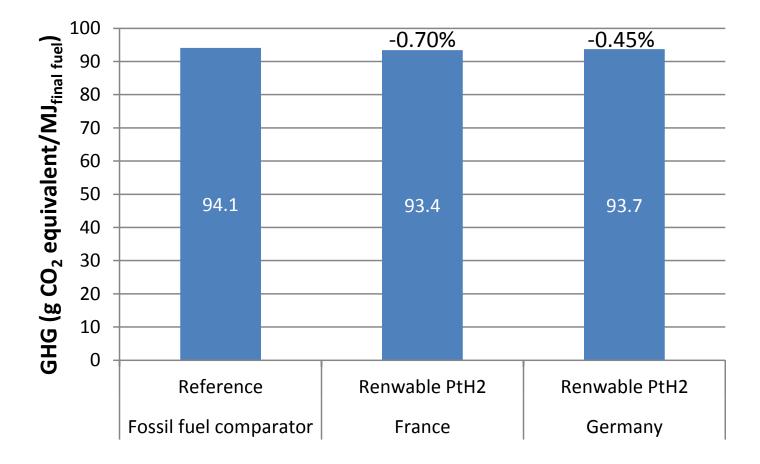
Hydrogen demand and production French & Germany crude oil refineries (kt/yr)


	Refinery process	H ₂ demand	H_2 production	Net H ₂ demand
	Hydrocracking	220.3		
[Vacuum distillate desulfurisation	29.2		
Ţ,	Middle distillate desulfurisation	48.9		
JCe	Naphtha desulfurisation	21.7		
Fran	FCC cracker		0*	
	Catalytic reformer		158.9	
	Total	320.1	158.9	161.3**


	Refinery process	H ₂ demand	H_2 production	Net H ₂ demand
yr]	Hydrocracking	327.2		
kt/y	Vacuum distillate desulfurisation	22.3		
	Middle distillate desulfurisation	65.1		
nar	Naphtha desulfurisation	37.0		
Germany	FCC cracker		0*	
U	Catalytic reformer		307.7	
	Total	452.1	307.7	144.4**

* H₂ from FCC plus other gases for heat supply; ** assumed to be supplied by steam-methane reformer (SMR)

Life-cycle assessment (LCA) Pathways for gasoline and diesel supply



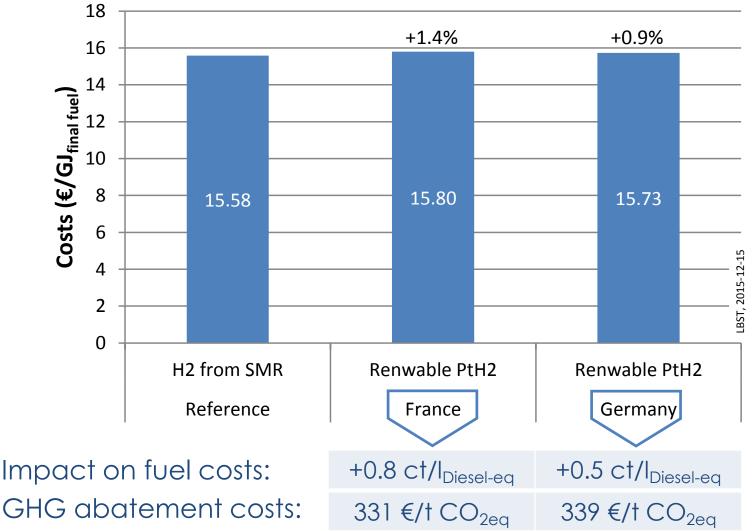
Scenario

Refinery net H₂ demand from 100% green H₂

Greenhouse gas emissions per final fuel France and Germany [g CO_{2eq}/MJ_{final fuel}]

FQD minimum target is -6% GHG emissions by 2020

	France	Germany
GHG mitigation of refinery emissions	1.33 Mt CO _{2eq} /a	1.50 Mt CO _{2eq} /a
	14.1 %	7.2 %

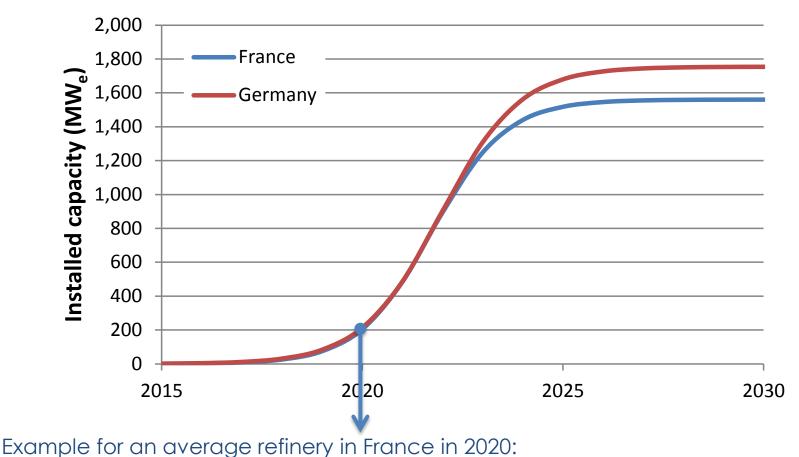

To give an impression about the quantities, this is equivalent to annual GHG emission of C segment cars in the order of

Gasoline car @ 7.0l/100km	575,000	648,000
Diesel car @ 5.5l/100km	658,000	740,000

→ Tangible action for refinery corporate social responsibility (CSR)

Gasoline and diesel production costs France and Germany [€/GJ_{final fuel}]

Penalties for non-compliance are 470 €/t CO_{2eq} in Germany


Cumulated investments France and Germany

	40 % PV : 60 % wind onshore	
	France	Germany
Net H ₂ input per crude oil input	0.66 % (LHV)	0.39 % (LHV)
CUC mitigation of refinencemissions	1.33 Mt CO _{2eq} /a	1.50 Mt CO _{2eq} /a
GHG mitigation of refinery emissions	14.1 %	7.2 %
H ₂ demand	4.06 TWh _{H2} /a 122 kt _{H2} /a	4.56 TWh _{H2} /a 137 kt _{H2} /a
Required electrolyser capacities	1.58 GW _e	1.78 GW _e
Electrolyser cost reduction 2025	45 % ₂₀₁₅	45 % ₂₀₁₅
Cumulated investments electrolysis [€]	1.5 billion €	1.6 billion €
Electricity demand H ₂ production	6.24 TWh _e /a	7.02 TWh _e /a
Required RES plant capacities	3.14 GW _e	3.73 GW _e
 Wind onshore 	■ 1.90 GW _e	■ 2.24 GW _e
 Photovoltaics 	■ 1.24 GW _e	■ 1.49 GW _e
Cumulated investments RES plants	4.4 billion €	5.4 billion€
Cumulated investments RES + electrolysis	5.9 billion €	7.0 billion €

→ For comparison: 650,000 cars · 30,000 €/EV = 19.5 billion €

Scenario installed electrolyser capacities in French and German refineries

 \rightarrow 8 units of 4 MW wind power plants + 20 MW installed photovoltaics

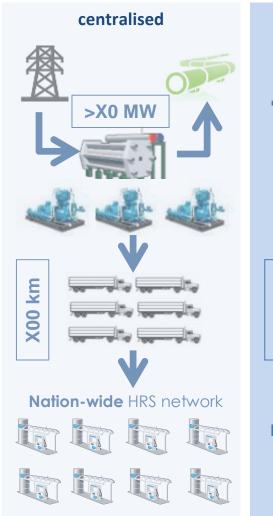
Conclusions

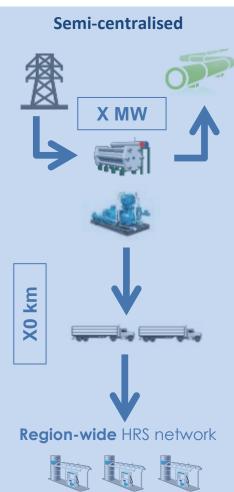
- Green H₂ in refineries is an attractive GHG mitigation option
- A portfolio of options will be needed post-2020 at the latest
- Introduction of green H_2 in an established bulk H_2 application
- Volume production of H₂ reduces electrolyser costs
- Electrolysers 'valley of death' is bridged by all fuel users
- → Deployment of electrolysers for refineries is a strategic move entailing long-term benefits for all hydrogen uses.

Recommendations

- Establish regulatory grounds for accountability at EU level
- Fast-track implementation rather at national level
- This study did full-cost analysis to explore the potentials next:
 - Refinery specific business case analyses
 - Regional renewable electricity supply scenarios
 - Synergies between electricity, refinery, H₂ infrastructure

Application B Semi-centralised PtG system for coupling the electricity and transport sectors




Section 3

COPYRIGHT: HINICIO & LBST

inicio Wovel techno-economic modelling of a semicentralised hydrogen system

W/o transport

With transport

On-site

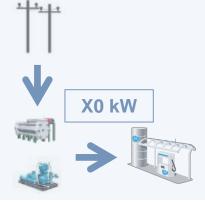
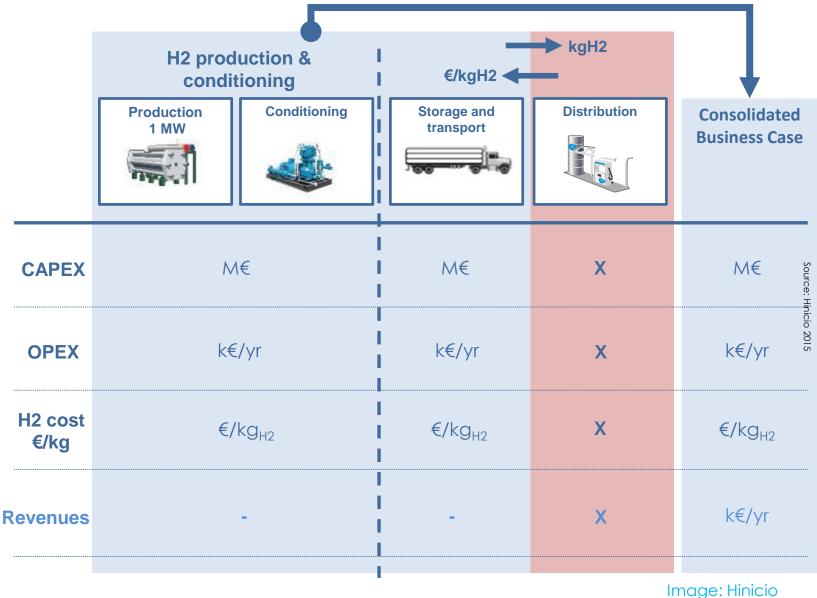
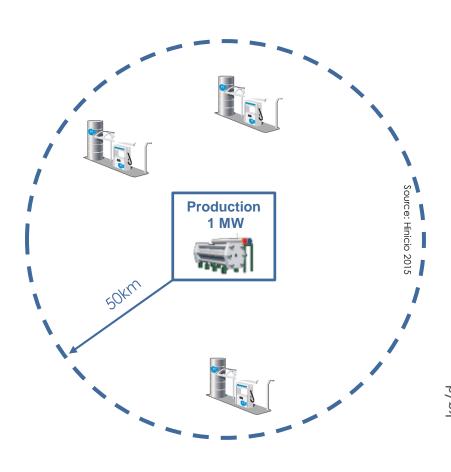



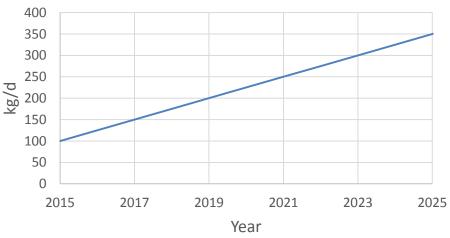
Image: Hinicio 34


Main components of a semi-centralised Power-to-Gas system

35

System dimensioning: starting from the demand

Electrolyser dimensioning and location


• <u>Dimensioning:</u>

Hypothetical demand of **325 kg/day** requiring a **1 MW** of electrolysers capacity

• Location:

The electrolyser is located where its makes most sense with regards to **interfacing with the power and natural gas grid**, **operations and logistics**.

Image& figures: Hinicio 36

Production

Conditioning

System dimensioning: costs and revenues of the electolyser and conditioning center

CAPEX

1 MW electrolyser including conditioning and trailer filling center and grid injection skid:

- 2015: 2.5 M€
- 2030: 1.2 M€

OPEX

- Electricity costs
 - Spot market price/Energy purchase price
 - Grid charges and other fees
 - Grid charge exemption for electricity used for injection of H2
- O&M : 6% CAPEX/year

REVENUES

- H2 injection: 90 €/MWh
- Primary/ secondary reserve payments: 18 €/MW/h

System dimensioning: Hydrogen storage and distribution system

How to dimension hydrogen logistics and storage?

- Size of storage @ HRS
- Size of trailers
- Number of trailers

3-step dimensioning method

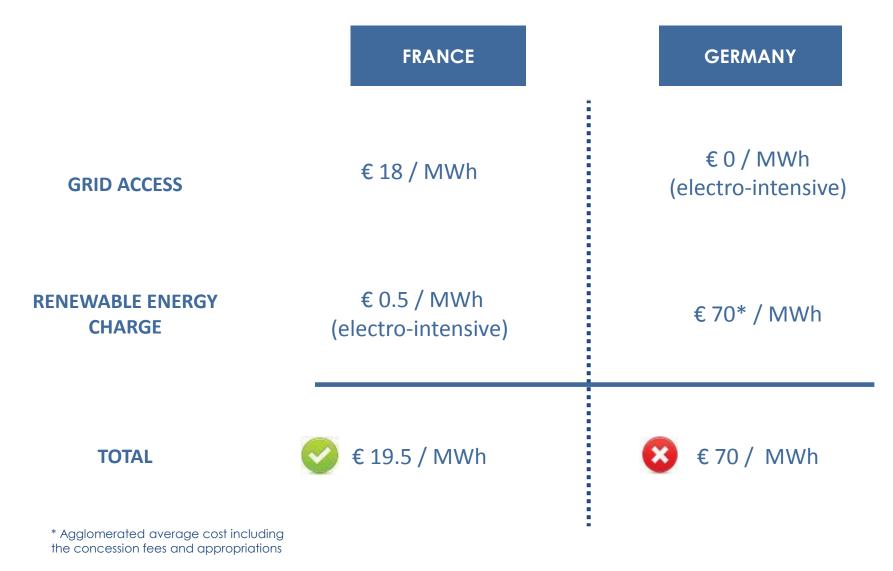
The HRS storage is sized according to the specific cost of delivery vs. the specific cost storage capacity (€/kg): **delivery** every 3 to 4 days at full capacity.

The trailer capacity is chosen in order to have a **filling time of less than one day** from the electrolyser.

3

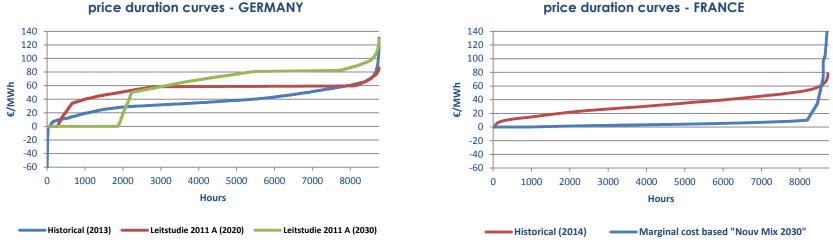
The number of trailers needed in the supply chain is determined based on **time to refill vs total hydrogen consumption**.

One 200 kg trailer is sufficient for initial volumes, 3 trailers when full electrolyser capacity is reached.



System dimensioning: costs of logistics and storage

Hinicio

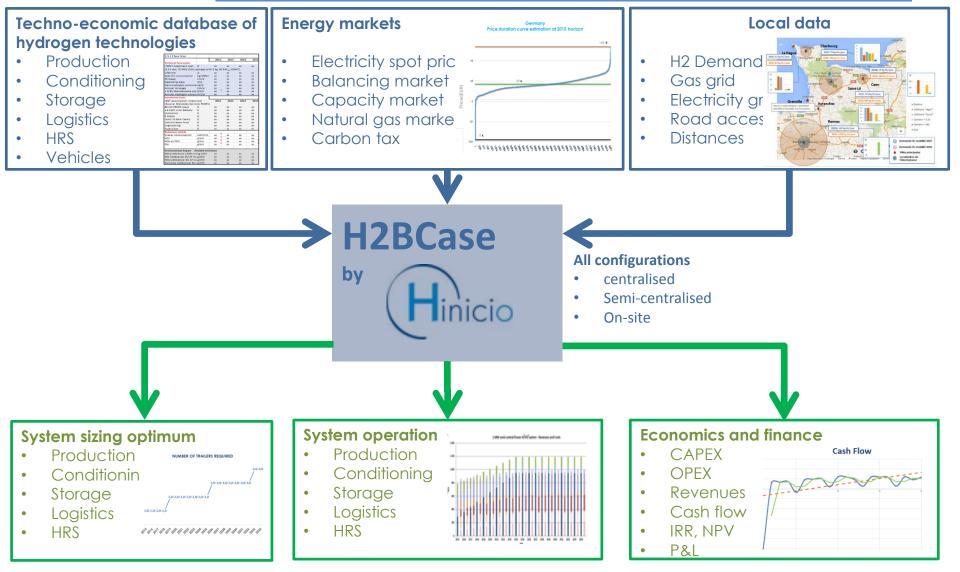

PtG can build on a more favorable electricity tax regime in France

Increasing penetration of low marginal cost generation makes PtG more attractive, in particular in France

Historical and projected marginal-cost-based

Historical and projected marginal-cost-based price duration curves - GERMANY

Historical data : 2014 spot market prices for France ; 2013 spot market prices for Germany


For 2020 and 2030, curves are based on marginal costs of production, including CO2 price, and based on projected residual load power duration curves.

- Marginal costs are generally lower in France than in Germany, due to nuclear and increased share of variable RE.
- Visible impact of zero marginal cost RE going forward.

Figures: Hinicio with data [Leitstudies 2011, RTE 2015, EPEX SPOT 2014, EPEX SPOT 2013] 41

H2BCase by HINICIO: Optimising and simulating your hydrogen supply chain

12 scenarios assessed

Parameter	Scenario											
	1 - Ref	2	3	4	5	6	7	8	9	10	11	12
Country	France		Germany									
Year of electrolyser commissioning	2015			2020	2030						2030	
Initial/Final H2 Mobility demand (kg/d)	100/325	100/ 163					No H2 mobilit y sales		100/ 163			
Electricity price duration curve or cost	France 2014		Germ. 2014	Germ. 2020	Germ. 2030							17% of wind el. Cost Germ.
Grid charge	France 2015		Germany 2015 rates									
CSPE (€/MWh)	Electr int. 0.5					19.5						
H2 injection price (€/MWh)	90 (FIT)				55.8			No inject.	No inject		55.8	
Electrolyser capex (M €/ MW)	1,9				0.55						0.55	
Electrolyser efficiency/stack lifetime	66%/4y				75%/ 10y						75%/ 10y	

Scenario <u>Nbr</u>	1 (Ref)
Country	France
Year of electrolyser commissioning	2015
Initial/Final H2 Mobility demand (kg/d)	100/325
Electricity price duration curve	France 2014
Grid charge	France 2015 rates
CSPE (€/MWh)	Electro-int. 0.5
H2 injection price (€/MWh)	90 (FIT)
Electrolyser capex (M €/ MW)	1,9
Electrolyser efficiency/stack lifetime	66%/4y

- H2Mobility market consumes 1/3 of electrolyser capacity in year 1 (1MW electrolyser – 100 kg/day – 100 FCEV/REX or 4 busses) and increases to full electrolyser capacity in year 10.
- Electrolyser plant considered to be benefiting from "electro intensif" regime (low grid / tax fees).
- Available capacity permitting, H2 is produced for injection into the Gas Grid when marginal costs of H2 production are lower than Feed-In-Tariff (assuming €90/ MWh) to achieve increase revenue streams during market take-off phase of FCEV.
- No charges applied to the electricity consumed for producing the hydrogen injected into the gas grid

1 MW semi-central Power-to-H2 system - Revenues and Costs (CAPEX depreciated)

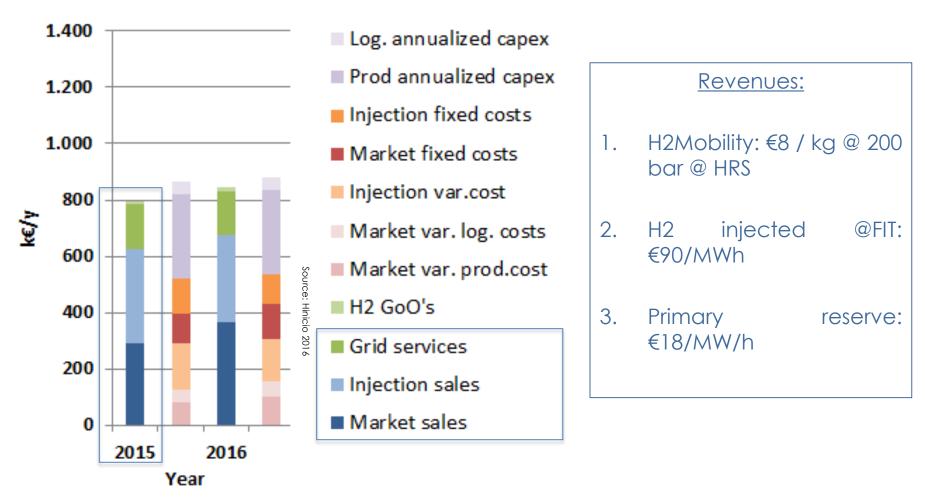
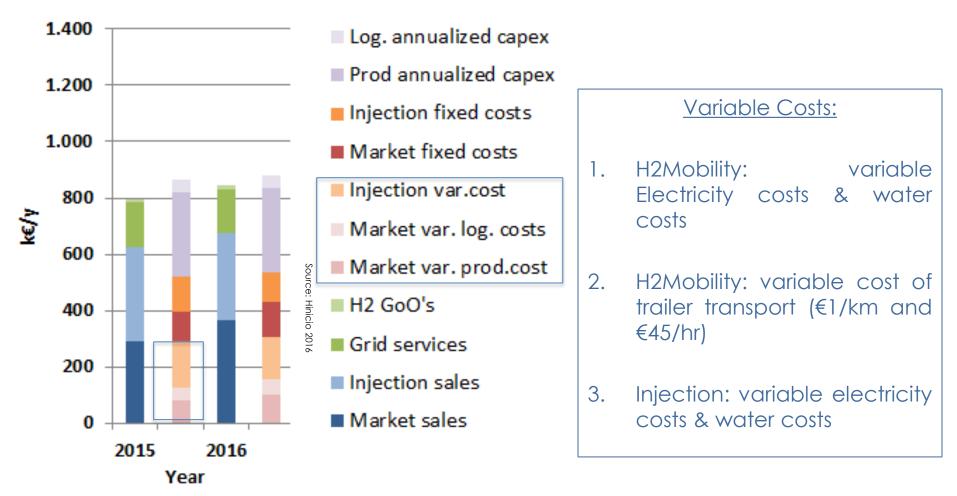



Figure: Hinicio, H2BCase Model

1 MW semi-central Power-to-H2 system - Revenues and Costs (CAPEX depreciated)

1 MW semi-central Power-to-H2 system - Revenues and Costs (CAPEX depreciated)

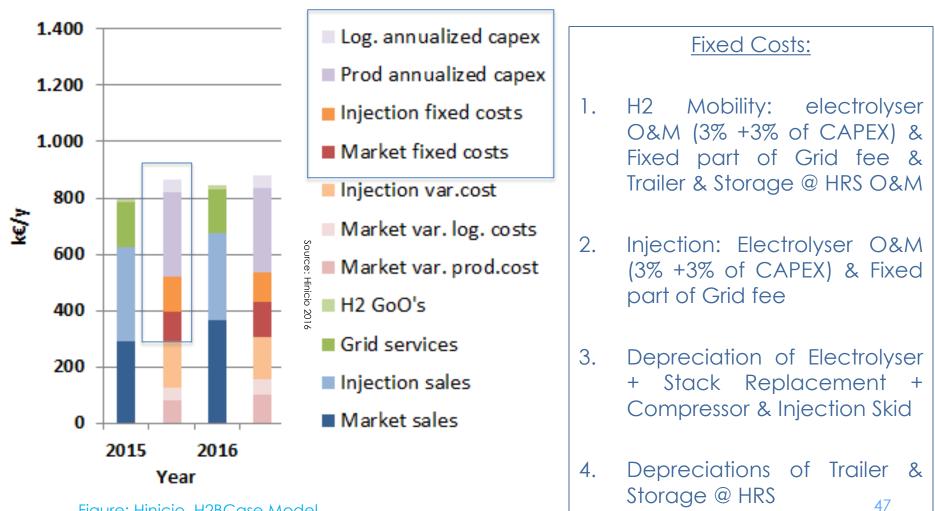
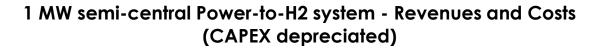
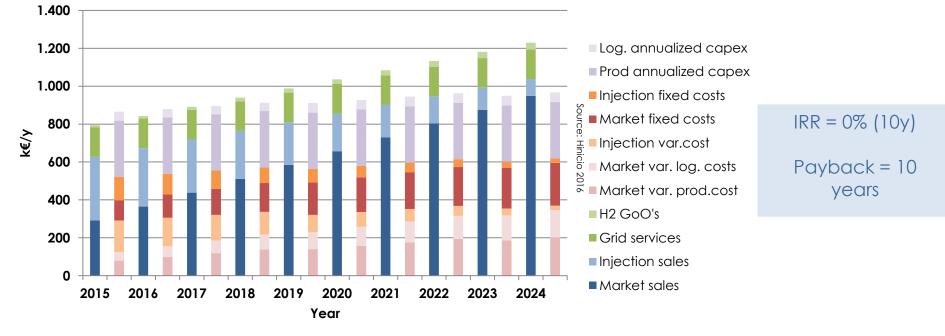
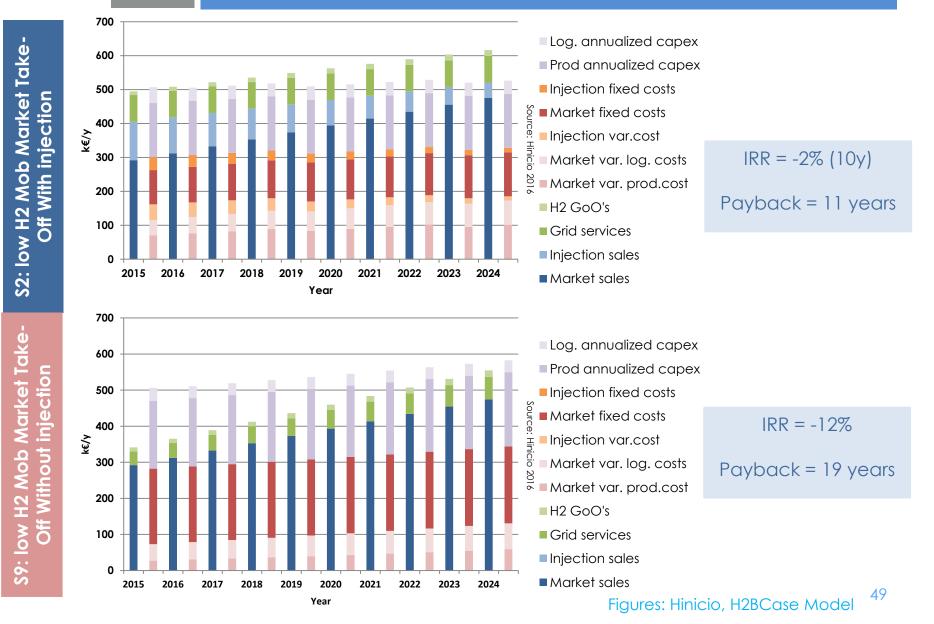
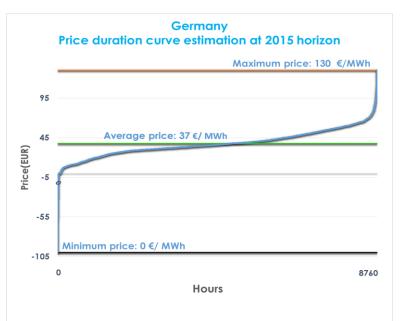




Figure: Hinicio, H2BCase Model


Scenario 1 - Reference - Results

Injection into the Gas Grid complement revenue streams during "valley of death" of FCEV market. Its contribution to margin decreases as hydrogen mobility market takes off.

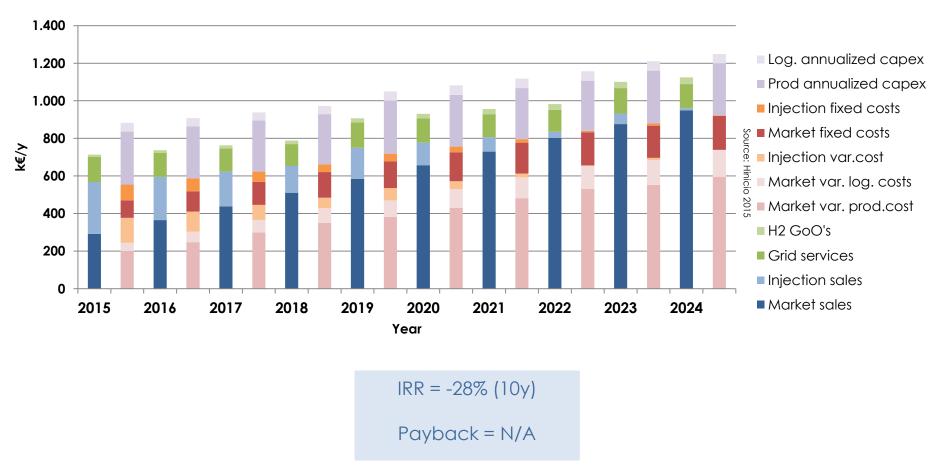
Injection provides risk coverage against lower than expected hydrogen sales



inicio

Scenario 3 - Germany 2015 - Hypotheses

Parameter	1 - Ref	2	3	4	5		
Country	France	1	Germany				
Year of electrolyser commissioning	2015			2020	2030		
Initial/Final H2 Mobility demand (kg/d)	100/325	100/ 163					
Electricity price duration curve or cost	France 2014		Germ. 2014	Germ. 2020	Germ. 2030		
Grid charge	France 2015		Germany 2015 rate		5 rates		
CSPE (€/MWh)	Electr int. 0.5						
H2 injection price (€/MWh)	90 (FIT)			1	55.8		
Electrolyser capex (M €/ MW)	1,9			1	0.55		
Electrolyser efficiency/stack lifetime	66%/4y				75%/ 10y		

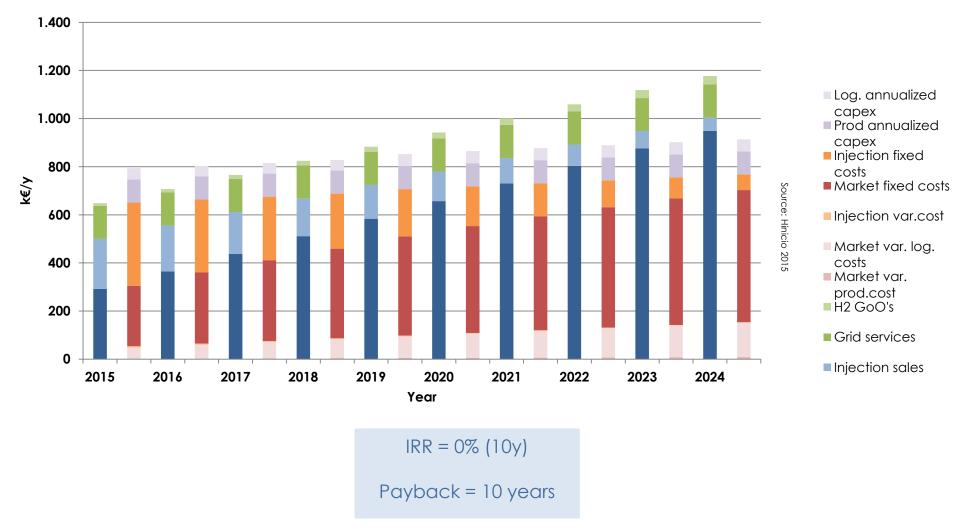


50

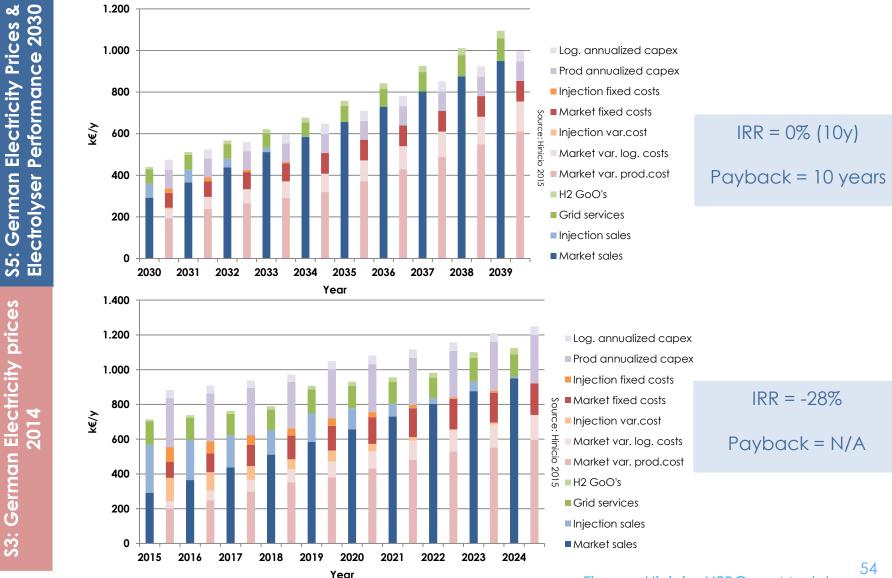
Figures and Table: Hinicio, based on data [EPEX SPOT 2013, Germany]

German electricity market conditions : Revenues and Costs

Scenario 11 – France 2030 - Hypotheses


Parameter		11		
rarameier	1 - <u>Ref</u>			
Country	France			
Year of electrolyser commissioning	2015	2030		
Initial/Final H2 Mobility demand (kg/d)	100/325			
Electricity price duration curve or cost	France 2014	100% of wind el. cost France		
Grid charge	France 2015	Tunco		
CSPE (€/MWh)	Electr int. 0.5			
H2 injection price (€/MWh)	90 (FIT)	55.8		
Electrolyser capex (M €/ MW)	1,9	0.55		
Electrolyser efficiency/stack lifetime	66%/4y	75%/ 10y		

- Upfront purchase of the production of renewable generation capacity at projected full cost
- Electrolyser technology of 2030


Table: Hinicio

Scenario 11 – France 2030 - Results

Based on the marginal cost based priced duration curve considered for 2030, the Power-to-Gas application would break even

inicio

ంర

Electricity Prices

Figures: Hinicio, H2BCase Model

Results of Scenario analysis

Scenario Nbr	1 (Ref)	2	3	4	5	6	7	8	9	10	11	12
Country	France		Germany									
Year of electrolyser commissioning	2015			2020	2030						2030	
Initial/Final H2 Mobility demand (kg/d)	100/325 (50+50 / 140+185)	100/163 (50+50/(70+ 93)					No H2 mobility sales		100/163			
Electricity price duration curve or cost	France 2014		Germ. 2014	Germ. 2020	Germ. 2030					26% of wind el. Cost France	100% of wind el. cost France	17% of wind el. Cost Germ.
Grid charge	France 2015		Germany 2015 rates							THICE	FIGHCE	Genn.
CSPE (€/MWh)	Electrint. 0.5					19.5						
H2 injection price (€/MWh)	90 (FIT)				55,8			No inject.	No inject		55,8	
Electrolyser capex (M €/ MW)	1,9				0,55						0,55	
Electrolyser efficiency/stack lifetime	66%/4y				75%/10y						75%/10 y	
IRR after 10 years	0%	-2%	-28%		0%	-5%	N/A	-3%	-12%	0%	0%	0%
1st Year EBIT > 0	Year 4	Year 2	N/A		Year 3	Year 5	N/A	year 5	year 13	year 4	Year 5	year 3
Payback Period	10 years	11 years	N/A		10 years	12 years	N/A	11 years	19 years	9 years	10 years	10 years
Alternative 1 to achieve IRR = 0%		€8.4/Kg H2 Mob	€9.5/Kg H2 Mob			€9.0/Kg H2 Mob	Primary Reserve @ 45.5/MW/h	€8.5/Kg H2 Mob	€11/kg H2 Mob			
Alternative 2 to achieve IRR = 0%		FIT €109 MWh	FIT @ €190 MWh			FIT @ €121 MWh	FIT @ €133.5 MWh	Primary Reserve@ €27/MW/h	Primary Reserve@ €70/MW/h			

Table: Hinicio, H2BCase Model

- Assuming a certain number of favourable regulatory conditions, achieving economic balance seems feasible for short-term deployments in France; therefore, with some further support, for instance in the form of investment subsidies, such deployments could attract private investment.
- The French fee regime applied as assumed above, would be particularly favourable for Power-to-gas. In contrast, the grid fee regime currently applied in Germany handicaps Power-to-gas.
- Injection into the natural gas grid can generate two complementary revenue streams – from sales to the gas grid, and from services to the power grid performed when hydrogen—is produced– which reduces exposure to uncertainty of revenues from the hydrogen market.
- An economic balance could potentially be achieved in both market environments and without public financial support by 2030 thanks to technological improvements.

- Create a feed-in tariff for the injection of green or low-carbon hydrogen into the natural gas grid of a level comparable to that of biomethane in France;
- In France, grant the hyperélectro-intensif status to hydrogen power-to-gas production;
- In Germany, provide similar tax, EEG appropriation, and grid fee benefits to hydrogen production by electrolysis as the hyperélectro-intensif status;
- In Europe, further develop sustainability criteria, certification procedures and accountability of green or low-carbon hydrogen towards EU targets, especially with regard to the EU Renewable Energies Directive (RED) and the EU Fuel Quality Directive (FQD);
- Exempt electricity used to produce green or low-carbon hydrogen injected into the natural gas grid from grid fees and energy taxes;
- Financially support the implementation of supplying hydrogen to fuel cell electric vehicles.

Hinicio and LBST would like to thank Fondation Tuck for supporting this study under its The Future of Energy programme